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Abstract—An unsplit formulation of the Berenger’s perfectly
matched layer absorbing boundary condition (PML ABC) for fi-
nite-differencetime-domain (FDTD) meshesispresented. Thisun-
split formulation usesthe conventional E-H algorithm, but doesnot
requirethe E and H fieldsto be split. The proposed formulation is
memor y-efficient like that of the previous unsplit PML following
the theory of Sacks. This unsplit formulation is easy to be imple-
mented, and many useful modification to the Berenger’s PML can
also be donetto it.

Index Terms—Absorbing boundary condition, finite-difference
time-domain method, perfectly matched layer.

|. INTRODUCTION

ERENGER'’S perfectly matched layer (PML) absorbing

boundary condition (ABC) [1] was one of the most im-
portant devel opmentsin the use of the finite-differencetime-do-
main (FDTD) method. Berenger's PML requires the E and H
fields to be split, this increases the memory requirements of
the FDTD procedure. The successful implementation of unsplit
PML following the theory of Sacks has been done by ZHAO
[2] and Sullivan [3]. But many useful modification(such as the
modification in MPML [4]) done to the Berenger's PML can
not be used with this kind of unsplit PML.

Inthisletter, an unsplit formulation of the Berenger’ sPML is
introduced. This unsplit formulation uses the conventional E-H
algorithm, but does not require the E and H fields to be split.
Like original Berenger’s PML, many useful modification to the
Berenger's PML can a so be used with this formulation. Exam-
ples show the efficiency of the proposed unsplit formulation.

Il. FOMULATION

Consider aPML with o, = o = 0. = 07 = 0, the origina
Berenger's PML resultsin 12 split field egn [5] in 3-D, as fol-
lows:

OH,, 9E.
= 1
o=, 3y (19)
OH,. OE,
= 1b
Ho~ 5, 5, (1b)
0H,.  OE,
- 1
Mo Ot By (10)

Manuscript received September 26, 2002; revised February 20, 2003. This
work was supported by the National Science Foundation of China under
Grant 60172002. The review of this letter was arranged by Associate Editor

Dr. Rudiger Vahldieck.

The authors are with the EMP Laboratory, Nanjing Engineering Institute,

Nanjing Jiangsu 210007, China.

Digital Object Identifier 10.1109/L MWC.2003.815694

15 4 o H,. =00 (1)
e (19)
ot = (1)

ot =5 (22)

B H,

anai aa; (20)

e ag 4 0,Ey, = a;i./ (2d)
2 o, =0 29)

€0 ag;y 88&; . (2f)

From (18) and (1b), we can get an unsplit field component equa-
tion for H,
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Usingtimestep At, and using the usual first-order difference ap-
proximations in time and space, the following difference equa-
tion for (3) is obtained:
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Difference equation for (1¢) is
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Defining the integral of E,. as
1
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Then using recursive method in egn (5), and assuming that ini-

tidly at timet = 0 (n = 0), al the field components are zero
over the whole computational domain, we have

1 1 At
H V2 (4 2 g k+2 ) =—
y= L+2"17 +2 o - Az

1 1
. <i+ 5,]}164- 1) — sumE" 1 <L + 5,]’, k)} (7

According to [1], [5], the FDTD formulation for (1d) is
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H)7V2(i 4 1/2, 4,k + 1/2) can be expressed as
n+1/2 _ n+1/2
Hy+Y <L+ ,1,k+2> = H}Y <L+ 71,/€+2>
n+1/2 { .
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Substituting (5) and (8) into (9), and eliminating H, ~*/?(i +
1/2, 4, k+1/2) with egn (7), We get the unsplit field component
formulation for Hy "/2(i +1/2,j, k + 1/2)
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Similarly, we can have other unsplit field component formula-
tion (see (12)—(15) at the bottom of the previous page) where
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From the derived unsplit field component equations above, we
can seethat only two quantities, the integral of £, and integral
of H, haveto be stored, in place of four quarntities, £,., £,
H,., H.,, withinitial implementation.

I1l. NUMERICAL VALIDATION

In order to validate numerically the derived unsplit formula-
tion of Berenger's PML, we conducted a numerical experiment
in a uniform rectangular cross-section waveguide. The dimen-
sion of the crosssectionis0.41 m x 0.2 minthe z and y derec-
tions respectively, and the distance between two endsis 0.2 m.
A uniform mesh with Az = Ay = Az = 0.01 m was used,
so the entire computational domain Qx includes 41 x 20 x 20
cells. One end of the waveguideis terminated by perfectly elec-
tric conductors, other end is terminated by one of 8-cell-thick
Berenger's PML, proposed unspilt PML, MPML, and unsplit
MPML (i.e.,, MPML using the proposed unsplit formulation),
respectively, also backed by perfectly electric conductors. A
A/2 dipole with 0.001 m diameter, fed by a sinusoidal wave
with a frequency of 1000 MHz is located along x direction
2-cells away from the PML in the waveguide. The dipole and
the cross-section containing it have the same center. The bench-
mark FDTD solution ,with zero truncation boundary reflections,
was obtained by running alarge mesh in 1, which the trunca-
tion boundary was placed sufficiently far away to provide for
causal isolation for al pointsin £y over the timeinterval used
for comparisons.
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Fig. 1. Global error energy (square of the electric field error at each grid cell
summed throughout the entire grid) withinthe 41 x 20 x 20 cell FDTD grid for
four kinds of 8-cell-thick PML, plotted as a function of time step number on a
logarithmic vertical scale.

Theerror dueto numerical reflections caused by the presence
of the conductor-backed PML was obtained by subtracting the
field at any point inside €2y from the field at the corresponding
point in €2r,. For the numerical experiment maximum conduc-
tivity and order of spatial polynomia are taken as o2 =
0.45798 S/m (i.e, R = 0.0001) and n = 2, respectively. Fig. 1
graphs the globa error energy for four cases mentioned above.
It can beclearly seen that the global error energy for 8-cell-thick
Berenger’ sPML and 8-cell-thick unsplit PML arethe same, and
the global error energy for 8-cell-thick MPML and 8-cell-thick
unsplit MPML are the same too. After n = 400 time steps, the
global error energy for 8-cell-thick unsplit MPML isabout 102
that of 8-cell-thick Berenger's PML.

IV. CONCLUTION

In conclusion, an unsplit formulation of the Berenger’s PML
ABC has been presented. The proposed unsplit formulation not
only maintains the efficient ability of using modifications done
to the original Berenger's PML, but has the advantage of re-
ducing the memory requirements.
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